
Revolutionizing Stock Market Forecasting: The Role of Artificial Intelligence
and GANs

Jianhua Dong*
Department of Humanities & Social Science, Xi’an Jiaotong Liverpool University, Suzhou, China

*Corresponding author: jianhua.dong20@gmail.com

Keywords: GAN (Generative Adversarial Networks), Stock Forecasting, Artificial Intelligence

Abstract: This document examines the use of Artificial Intelligence, specifically Generative
Adversarial Networks (GANs), in stock market forecasting, highlighting its impact, advantages, and
challenges. It addresses concerns about data quality, biases, and overfitting in GAN models. The
structured approach includes a literature review, method explanations, and experimental analysis,
offering insights into the implications of AI in stock market forecasting. We would provide a critical
analysis of the literature, identifying gaps in current research and suggesting future directions for the
application of GANs in financial markets. It would conclude with reflections on the broader
implications of integrating advanced AI technologies in stock market forecasting, considering both
the potential benefits and the limitations. This comprehensive approach would provide a nuanced
understanding of the subject, offering insights into the current state and future prospects of AI in
financial forecasting.

1. Introduction
This document explores the use of Artificial Intelligence, specifically Generative Adversarial

Networks (GANs), in stock market forecasting. It emphasizes how AI has transformed stock market
analysis and offers new opportunities for investors. The report highlights the potential benefits and
challenges associated with GANs in predicting stock market trends, including the risk of information
manipulation [1-3]. It raises concerns about data quality, biases, and overfitting in GAN models,
which can lead to unreliable predictions. The document outlines a structured approach, beginning
with a literature review and explaining the model's theoretical foundations. It discusses experimental
analysis, presenting results through charts and tables, and concludes by summarizing key findings,
suggesting future research directions, and offering insights for other researchers.

2. Literature Review
These paragraphs highlight the application of innovative machine learning techniques to address

specific challenges in distinct domains. The first paragraph introduces a hybrid machine learning
system that combines Genetic Algorithm (GA) and Time Series Analysis to enhance stock market
trading decisions, mitigating the problem of selecting optimal parameter combinations for technical
trading rules [4-7]. The second and third paragraphs delve into Generative Adversarial Networks
(GANs), emphasizing their capacity to learn deep representations without extensive annotated data
and their diverse applications, including image synthesis and classification. The review article's aim
is to provide the signal processing community with an informative overview of GANs, while also
underscoring the existing challenges in theory and application. The final paragraph underlines the
importance of creating an investment decision support system for stock investors in Taiwan and
presents a combined DT+ANN model, yielding a 77% accuracy rate, which outperforms single ANN
and DT models, particularly in the electronic industry[8-9]. These developments showcase the ever-
evolving landscape of machine learning and its ability to offer innovative solutions to complex
problems in various domains [10].

2023 11th International Education, Economics, Social Science, Arts, Sports and Management Engineering Conference

Copyright © (2023) Francis Academic Press, UK DOI: 10.25236/ieesasm.2023.067405

3. Method
The provided code doesn't utilize specific deep learning models or neural network models. Instead,

it primarily employs traditional statistical and mathematical methods to calculate and analyze
technical indicators and Fourier transformations in stock market data. Here's a breakdown of the
methods used:

Moving Averages (MA): It calculates the 7-day and 21-day simple moving averages, which are
traditional technical indicators used for smoothing stock price data to identify trends.

MACD (Moving Average Convergence Divergence): The MACD is computed through
exponential moving averages, another traditional technical indicator used to measure the strength of
trends and differences between trends.

Bollinger Bands: It calculates the upper and lower bands of Bollinger Bands, a technical indicator
based on standard deviation to measure price volatility.

Exponential Moving Average (EMA): It computes the exponential moving average, which is
another technical indicator used for smoothing stock price data.

Fourier Transform: The Fourier transform is not a deep learning model but a mathematical method
used to analyze frequency components in time series data. Here, it's applied to analyze the frequency
characteristics of stock prices.

4. Experimental analysis
The code you've provided is a typical entry point in a Python script, and it runs when the script is

executed. Here's an explanation of what this code does:
If __name__ == '__main__': - This is a common Python programming construct. The code block

underneath this line will only execute if the Python script is run directly as the main program. It won't
execute if the script is imported as a module into another script.

Input_dim = X_train.shape[1] - This line calculates the number of features (input dimensions) in
your training data, which is stored in the variable X_train.

Feature_size = X_train.shape[2] - This line calculates the size or dimension of each feature in your
training data. It's often used to determine the structure of your neural network model.

Output_dim = y_train.shape[1] - This line calculates the number of output dimensions. In a
machine learning context, it often refers to the number of values you're trying to predict. Your training
targets are stored in the variable y_train.

Opt = {"lr": 0.00016, "epoch": 165, 'bs': 128} - This line sets up a dictionary called opt that likely
contains configuration options for your training process. It specifies the learning rate (lr), the number
of epochs (epoch), and the batch size (bs) to be used during training.

Generator = make_generator_model(X_train.shape[1], output_dim, X_train.shape[2]) - This line
creates a generator model. It's likely a function that generates a neural network model for your task.
It takes the number of input dimensions, output dimensions, and feature size as parameters, which
were calculated earlier.

Discriminator = make_discriminator_model() - This line creates a discriminator model. Similar to
the generator, it's probably a function that generates a neural network model for the discriminator.

Gan = GAN(generator, discriminator, opt) - This line creates an instance of a GAN (Generative
Adversarial Network) using the generator and discriminator models you've defined, along with the
configuration options stored in the opt dictionary.

Predicted_price, Real_price, RMSPE = gan.train(X_train, y_train, yc_train, opt) - This line starts
the training process of the GAN model. It takes the training data (X_train, y_train, and yc_train) along
with the configuration options (opt) as inputs and returns predicted prices, real prices, and a value
called RMSPE, which is likely a measure of prediction accuracy (Root Mean Square Percentage
Error).

In summary, this code block sets up the necessary components for training a GAN model for your
specific task, including data dimensions, model structures, training options, and then proceeds to train
the GAN model using your training data. The resulting predictions, real data, and an accuracy

406

measure are stored in variables for further analysis or evaluation.

Figure 1. GAN’s D loss and G loss

Figure 1 provided code snippet is responsible for rescaling and visualizing the results of stock
price prediction. Let me explain it step by step:

Rescaling: The code begins by rescaling the predicted and real stock prices. It appears to be loading
previously saved scalers (X_scaler and y_scaler) and index information (train_predict_index and
test_predict_index) that were used during the training phase.

Rescaling Predicted Prices: It applies the inverse transformation to the predicted prices
(Predicted_price) using the y_scaler. This is done to get the predicted prices back to their original
scale.

Creating DataFrames: The code creates two dataframes, predict_result and real_price, to organize
the rescaled predicted and real prices, respectively. It appears to be doing this in a loop, where for
each row in the rescaled predicted and real prices, it creates a DataFrame containing the predicted
and real prices for a specific time window.

Calculating Mean: For each row, the code calculates the mean of the predicted and real prices
within that time window and stores the mean values in predicted_mean and real_mean columns in
the respective dataframes.

Plotting the Results: After organizing the data, the code plots the real and predicted mean prices.
It uses the matplotlib library to create a graph showing the real and predicted stock prices over time.

Here's what the code does in a nutshell: It takes previously predicted stock prices, scales them back
to their original values, organizes the data, calculates the mean prices within specific time windows,
and then displays a graph showing the real and predicted mean stock prices over time. Figure 2 can
help you assess how well the predictions match the actual stock prices.

Figure 2. Predicted result

5. Conclusion
The application of Generative Adversarial Networks (GANs) in stock forecasting presents both

407

opportunities and challenges. After analyzing the results of using GANs for stock price prediction,
several key points can be summarized:

Data Rescaling: GANs are often trained on scaled data, and it's crucial to rescale the predicted
results back to their original scale for meaningful interpretation. The code snippet demonstrates the
process of inverse transformation using previously saved scalers.

Mean Price Analysis: The code computes the mean predicted and real stock prices within specific
time windows. This can be a useful way to evaluate the performance of the GAN model, especially
when dealing with high-frequency financial data.

Visualization: Plotting the predicted and real mean stock prices over time provides a visual
representation of the model's performance. It allows for a direct comparison between the GAN-
generated predictions and the actual stock prices.

Accuracy Assessment: While GANs can capture complex patterns in stock price data, the accuracy
of stock forecasting remains a challenging task. The success of a GAN-based approach depends on
factors like the quality of data, model architecture, and the choice of hyperparameters.

Long-Term Predictions: It's important to note that GANs, like many machine learning models,
may face challenges when making long-term stock price predictions. The inherent unpredictability of
financial markets, influenced by a wide range of external factors, makes long-term forecasting
particularly challenging.

Model Complexity: GANs are complex models that require substantial computational resources
and expertise to train effectively. Model architecture and hyperparameter tuning play a crucial role in
achieving accurate predictions.

Continuous Improvement: Stock forecasting with GANs is an area of ongoing research and
development. Continuous improvement and experimentation with different GAN variations, data
sources, and feature engineering are essential to enhance predictive accuracy.

In conclusion, GANs offer a promising avenue for stock price forecasting, but they are not without
their challenges. The code snippet provided offers insights into rescaling results and assessing the
model's performance. Further refinements and research are required to make GAN-based stock
forecasting more accurate and reliable. It's essential to complement GAN approaches with other
traditional financial analysis techniques to increase the robustness of forecasting models.

References
[1] Shen, S., Jiang, H., & Zhang, T. (2012). Stock market forecasting using machine learning
algorithms. Department of Electrical Engineering, Stanford University, Stanford, CA, 1-5.
[2] Tsai, C. F., & Wang, S. P. (2009, March). Stock price forecasting by hybrid machine learning
techniques. In Proceedings of the international multiconference of engineers and computer
scientists (Vol. 1, No. 755, p. 60).
[3] Choudhry, R., & Garg, K. (2008). A hybrid machine learning system for stock market
forecasting. International Journal of Computer and Information Engineering, 2(3), 689-692.
[4] Shah, V. H. (2007). Machine learning techniques for stock prediction. Foundations of Machine
Learning| Spring, 1(1), 6-12.
[5] Kumar, L., Pandey, A., Srivastava, S., & Darbari, M. (2011). A hybrid machine learning system
for stock market forecasting. Journal of International Technology and Information
Management, 20(1), 3.
[6] Gao, Y., Feng, J., & Tao, Z. (2023, July). Exploring the Impact of Input Features on GAN-Based
Stock Prediction. In 2023 IEEE 5th International Conference on Power, Intelligent Computing and
Systems (ICPICS) (pp. 219-223). IEEE.
[7] Qin, J., Tao, Z., Huang, S., & Gupta, G. (2021, March). Stock price forecast based on ARIMA
model and BP neural network model. In 2021 IEEE 2nd International Conference on Big Data,
Artificial Intelligence and Internet of Things Engineering (ICBAIE) (pp. 426-430). IEEE.

408

[8] Singh, S., Madan, T. K., Kumar, J., & Singh, A. K. (2019, July). Stock market forecasting using
machine learning: Today and tomorrow. In 2019 2nd International Conference on Intelligent
Computing, Instrumentation and Control Technologies (ICICICT) (Vol. 1, pp. 738-745). IEEE.
[9] Gui, J., Sun, Z., Wen, Y., Tao, D., & Ye, J. (2021). A review on generative adversarial networks:
Algorithms, theory, and applications. IEEE transactions on knowledge and data engineering, 35(4),
3313-3332.
[10] Arjovsky, M., & Bottou, L. (2017). Towards principled methods for training generative
adversarial networks. arXiv preprint arXiv:1701.04862.

409

	1. Introduction
	2. Literature Review
	3. Method
	4. Experimental analysis.
	5. Conclusion
	References

